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Figure 1: CLIP-Head enables text-driven generation of 3D neural head models in a variety of facial expressions(left), with
diverse textures (middle) in the form of aligned UV texture maps (right).

ABSTRACT

We propose CLIP-Head, a novel approach towards text-driven neu-
ral parametric 3D head model generation. Our method takes simple
text prompts in natural language, describing the appearance &
facial expressions, and generates 3D neural head avatars with ac-
curate geometry and high-quality texture maps. Unlike existing
approaches, which use conventional parametric head models with
limited control and expressiveness, we leverage Neural Parametric
Head Models (NPHM), offering disjoint latent codes for the dis-
entangled encoding of identities and expressions. To facilitate the
text-driven generation, we propose two weakly-supervised map-
ping networks to map the CLIP’s encoding of input text prompt
to NPHM’s disjoint identity and expression vector. The predicted
latent codes are then fed to a pre-trained NPHM network to gener-
ate 3D head geometry. Since NPHM mesh doesn’t support textures,
we propose a novel aligned parametrization technique, followed by
text-driven generation of texture maps by leveraging a recently pro-
posed controllable diffusion model for the task of text-to-image syn-
thesis. Our method is capable of generating 3D head meshes with
arbitrary appearances and a variety of facial expressions, along with
photoreal texture details. We show superior performance with ex-
isting state-of-the-art methods, both qualitatively & quantitatively,
and demonstrate potentially useful applications of our method.
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1 INTRODUCTION

Faces are a fundamental aspect of communication and identity
among humans. In virtual contexts like gaming and mixed reality,
the significance of 3D face/head modeling cannot be overstated — it
amplifies realism, empowers expressive avatars, aids medical emula-
tors, and influences diverse domains including film, education, and
research. Conventional 3D head modeling relies on labor-intensive
digital sculpting or intricate 3D scanning, hampering diversity and
scalability in digitization. Statistical parametric head models (e.g.
FLAME(Tianye Li 2017]), effectively represent shape and expres-
sions of human head in a compact parametric space. These models
are though largely successful in achieving 3D head digitization from
sparse inputs (e.g. images) and compatibility with standard graphics
pipeline, but fall short in capturing intricate surface details due to
fixed topology templates, constraining diverse hairstyles. More-
over, the interdependence of their shape and expression parameters
restricts controllability [Simon Giebenhain 2023].

In line with contemporary trends in research [Alec Radford
2021; Robin Rombach 2021; Zhang and Agrawala 2023], harnessing
natural language for 3D face/head modeling seems not only mean-
ingful but also invaluable. Amidst various proposed methods on
these lines [Chi Zhang 2023; Evangelos Ntavelis 2023; Oscar Michel
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2021], a recent work ClipFace[Shivangi Aneja 2023] stands out
by enabling text-guided generation of photoreal textures and ex-
pressions onto 3D morphable head models. The method leverages
the parametric geometry of FLAME[Tianye Li 2017], integrated
with an adversarial generative network to synthesize facial ap-
pearances in a self-supervised manner. To facilitate text-driven
editing and manipulation of texture space, their method employ
pre-trained CLIP[Alec Radford 2021]. Another similar work HiFi-
Face[Menghua Wu 2023] provides more fine-grain control over
geometric manipulation by training a supervised text parser net-
work guided by CLIP encodings to predict descriptive code, which
is used to synthesize the initial 3DMM parameters and texture map.
However, the text parser requires strong supervision in the form of
insanely descriptive text annotations during training. Furthermore,
both ClipFace and HiFi-Face suffer from the inherent limitations
of parametric models (PCA-based low-dimensional representation
lacks disentanglement), constraining the output diversity and flexi-
bility in the generation, while also requiring test-time optimization
for texture synthesis.

We posit that an effective 3D head generation method should
exhibit specific desired traits such as, its foundational shape and
pose representation should be profoundly disentangled, enabling
precise manipulation of head geometry and facial expressions with
user-friendly text prompts. Additionally, the preference leans to-
wards a single inference step for producing varied appearances and
texture styles. On these lines, a recent neural representation Neural
parametric head models (NPHM), proposed in [Simon Giebenhain
2023], claims to disentangles the head geometry into two disjoint
latent spaces — identity and expression, allowing more granularity
in 3D neural head generation by separately decoding sampled latent
codes for identity and expressions. However, estimating the values
of latent codes for a target identity and expression requires a point
cloud representation of the target head and a slow optimization
process, limiting the ease and control over generating 3D head
geometries.

In this work, we propose a novel method for the text-guided
generation of photo-realistic 3D head meshes with varying geom-
etry, expression and high-quality/diverse texture maps. We adapt
NPHM representation and facilitate the text-guided estimation of
the identity and expression latent codes by introducing two novel
mapping networks (MLPs) — one for mapping the CLIP encoded
text-prompt embedding to the identity latent code of NPHM, and
the other to the expression latent code. Unlike supervised train-
ing needed in HiFi-Face[Menghua Wu 2023], we train our net-
works in a weakly supervised fashion, eliminating the need for
pairwise 3D shape/expressions and text description pairs. Utiliz-
ing advanced CLIP-based diffusion models, we aim to employ La-
tent Diffusion[Robin Rombach 2021] for text-guided high-quality
texture synthesis across diverse 3D head geometries. To ensure
harmony between the text-driven synthesis and 3D head geome-
try, we propose a custom-trained ControlNet[Zhang and Agrawala
2023] architecture, where we feed UV normal maps of the 3D head
mesh as the control hint for fine-grain steering of UV texture (RGB)
map generation. However, the 3D scan meshes exhibit varying
and unstructured UV parametrization, demanding semantically
meaningful and aligned UV maps as valuable ControlNet hints. To
achieve this, we introduce a technique to roughly align 3D head
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mesh UV coordinates, enabling the localization of similar regions
within the same UV space. During inference, the aligned UV nor-
mal map of the generated NPHM head mesh is fed into ControlNet,
synthesizing UV texture maps guided by simplistic text prompts.
In summary, our key contributions are as follows:
«+ A novel method to provide text-guided control over a neural head
representation for highly controllable 3D head generation.
« A novel technique to automatically align the UV texture coordi-
nates of NPHM meshes, enabling text-guided high-fidelity texture
synthesis in a single feed-forward pass.

2 METHOD

Given an input text prompt, first the Geometry Synthesis module
generates an NPHM head mesh in accordance with the textual de-
scription. Subsequently, this mesh is fed to Aligned UV Parametriza-
tion module for the seam estimation and yielding a coherent UV
map with projected surface normals. Finally, the Texture Synthe-
sis module generates a UV texture map, guided by the input text
prompt.

In regard to neural head representation adopted from NPHM [Si-
mon Giebenhain 2023], let the disentangled latent vectors for face
identity and expression (as in NPHM) be z;4 and zex), respectively.
In order to decode z;4 and zex, the NPHM employ two pre-trained
MLP-based decoders (trained on a dataset of head scans), ;5 &
Fexp, yielding a neural SDF representation of the head [see Fig-
ure 2 (right)]. Subsequently, a polygonal head mesh M is extracted
by performing y, consisting of two operations — SDF query and
marching cubes. Thus, the entire process of NPHM is given as,

M = x(Fia(ziq) + 7:exp (zid> Zexp)) (1

where“+” is the deformation of the neural field described in [Si-
mon Giebenhain 2023].

2.1 Geometry Synthesis

This module aims to map a region of the CLIP’s embedding space
to the NPHM’s latent space. We achieve this in a novel fashion
by proposing an identity mapping network MLP;; and an expres-
sion mapping network MLPeyp, which learns to map the CLIP
embedding vector to the corresponding latent vectors z;q & zexp,
respectively. Starting with a text prompt, CLIP’s text encoder gen-
erates /, then z;5 and zexp are obtained via MLP;; and MLP.yx
respectively. These latents are then used in Equation 1 to yield the
head mesh M, as illustrated in Figure 2.

We first discuss the training strategy of identity mapping net-
work MLP;;, which requires corresponding ground truth latent
vectors z;4 associated with specific CLIP embedding vectors .
In the absence of an annotated dataset, we propose a novel au-
tomated approach to generate such pairs using the ControlNet
method. As shown in Figure 2(right), starting with randomly sam-
pled z;4 from NPHM’s identity latent space, a neutral expression
head mesh M,, .41 is generated, serving as the base. This mesh is
then randomly rotated about a vertical axis and rendered to acquire
normal map Iorm. Employing the ControlNet, guided by a template
prompt and control hint I,orm, we synthesize images resembling
facial features and geometry captured by Inorm. Each resulting im-
age’s embedding vector ¢ is used with its corresponding z;4 as
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Figure 2: Pipeline of the proposed framework (left). Data generation procedure for training MLP;; (right).

paired samples for MLP;; training. Approximately 10k such pairs
are generated for this purpose. This approach leverages weak super-
vision, capturing facial shape information implicitly through image
decoding. During inference, by using a text prompt to generate ¢/
through CLIP’s text encoder, followed by mapping through MLP;,,
an accurate identity latent vector z;4 can be obtained due to CLIP’s
text-image mapping properties.

For training expression mapping network MLPexp, we propose
a different strategy for generating training pairs of zexp’s and the
associated y’s. We leverage the dataset proposed in [Simon Gieben-
hain 2023], where 23 common expressions per subject are captured.
Since we have different mapping networks for facial geometry (ap-
pearance) and expressions, we propose to select a single identity
and use its expressions for generating the training pairs. To do
so, we first provide a label for each of the 23 expressions in the
NPHM dataset, e.g. happy, sad, angry, pouting, laughing, etc. Given
latent vector zexp associated with an expression, we then curate
random prompts using the template — “A face of a {young/middle-
age/old} {ethnicity} {man/woman/person} with {color} hair,
{expression}.”. These prompts are encoded by the CLIP’s text en-
coder, generating corresponding ¥’s which are used as input, along
with the corresponding zexp for training MLPeyxp. Once both the
mapping networks are trained, given a text prompt’s CLIP encoding
¥, MLP; 4 predicts z;q and MLPexp predicts zex). Both the predicted
latent vectors are then fed to Equation 1 to obtain head mesh M.

2.2 Aligned UV Parametrization

This module performs UV parametrization of arbitrary head meshes
such that similar parts of all the head meshes lie approximately in
the same region in the UV space, as shown in Figure 2. This rough
alignment is required for training the Texture Synthesis module,
which we explain later in subsection 2.3. To obtain a low-distortion
UV parametrization of the given head mesh M, we first estimate a
seam to cut the mesh. The back part of the head seems a natural
choice to avoid artifacts on the face. Since, all the NPHM head
meshes obtained via Equation 1 fall in the same coordinate system,
we identify the common bisecting plane to designate the seam.
Thereafter, the boundary vertices of the head mesh (seam vertices
+ neck boundary vertices) are mapped to a fixed 2D curve in the
UV space (depicted by green/purple color-coded curve in Figure 2).
Submission ID: tcom;34.2023 — 10 — 0117 : 34.Page3 0f1 — —4.

Since the boundary of the mesh is fixed, we now compute two
harmonic functions — one for U and one for the V coordinate. Each
harmonic function uses the fixed vertices on the curve as boundary
constraints to estimate a harmonic parametrization [Eck, 2005] for
the remaining vertices.

2.3 Texture Synthesis

In the final stage of the proposed framework, we propose to syn-
thesize a coherent, high-quality UV texture map for the head mesh
M. Since we are interested in generating text-driven UV texture
maps (which are essentially 2D RGB images), employing latent-
diffusion-powered ControlNet for this task seems an apt choice for
generating diverse textures. However, the task is not trivial. We
propose to train a network ControlNet,, on our own, which takes
some form of control hint and generates a text-guided UV texture
map for M. Since the control hint should somehow describe the UV
layout of M so that the generated texture map follows the same UV
layout, we propose to project the face normals onto the UV space
to obtain a UV normal map to use as control hint (as shown in Fig-
ure 2). Now, the motivation for aligning the UV layout of arbitrary
head meshes becomes more evident, as the control hint should have
semantically meaningful characteristics which can be interpreted
easily by ControlNet,,. For training, we employ the same aligned
UV parametrization (proposed in the previous section) for the head
scans in the NPHM dataset to obtain aligned UV normal map and
UV texture map pairs. Note that the default unaligned UV layouts
of the head scans are unstructured. For automatically generating
accurate text prompts to be used during training, we render the
head scans and pass the rendered image to BLIP-2 for captioning.
Once trained, the proposed ControlNety, is capable of generating
a high-quality UV texture map for a given head mesh M, controlled
by the underlying UV normal map and guided by the text prompt
given by the user. Optionally, the generated texture map can be
enhanced by applying super-resolution using [Xintao Wang 2021].
All the quantitative and qualitative evaluations are done without
this enhancement.

3 RESULTS & EVALUATION

Qualitative Evaluation: We demonstrate qualitative results of
the proposed framework, where we show 3D head generation on a
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Figure 3: Qualitative Results: (a) Text-driven generation and stylization of 3D head meshes. (b) Text-driven generation of 3D

head meshes with varying expressions.
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Figure 4: Qualitative comparison with existing SOTAs.

wide variety of styles (Figure 3(a)) and styles (Figure 3(b)). Figure 4
shows a qualitative comparison with SOTA methods, where our
generation results seem more convincing and true to the input text
prompt (as revealed in the user study).

Quantitative Evaluation: We compare the CLIP Score[Shivangi Aneja

2023] (metric explained in supplementary) of our method with ex-
isting SOTAs in Table 1, where we outperform other methods in all
three variants of the encoders. This further solidifies the claim that
we have a higher similarity between the input text and rendered
mesh image.

Please refer to the supplementary for user study, extended qual-
itative/quantitative evaluation, discussion, limitations and
360° video renderings.

Method CLIP Score T
ViT-H/14 ViT-L/14 ViT-B/16
ClipFace 0.287 + 0.041 | 0.289 +£0.039 | 0.307 £ 0.023
HiFi-Face 0.229 £ 0.033 | 0.236 £ 0.031 0.300 = 0.018
CLIP-Head | 0.292 + 0.035 | 0.303 + 0.039 | 0.315 + 0.021
Table 1: Quantitative comparison with SOTA methods.
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